What is a microscope of atomic forces?

Original source: Wikipedia

An atomic force microscope (AFM) is a type of very high resolution scanning probe microscope, which can measure fractions of the nanometer, more than 1000 times better than the optical diffraction limit.

The forerunner of the AFM, the tunnel effect microscope (STM), was developed by Gerd Binnig and Heinrich Rohrer in the early 1980s at the IBM Research Center - Zurich, a progress that earned them the Nobel Prize in Physics in 1986 Binnig, Quate and Gerber invented the first atomic force microscope in 1986. The first commercially available atomic force microscope appeared in 1989.

The AFM is one of the most important tools for preparing topographic maps of matter on a nanometric scale. The information is collected by scanning detecting the molecular and atomic forces that act on a tip located on the surface of the material studied. The piezoelectric elements, which allow small but exact movements in the electronic control, make very precise scanning possible. In some variations, electrical potentials can also be measured using conductive micro-levers. In newer and more advanced versions, it is even possible to measure the electrical conductivity of the underlying surface by transmitting electrical current through the tip, but this method is more difficult and there are few research groups that present reliable data with this system.

Lego Lish-Mot, an innovative microscope made with Lego parts and manufactured in Barcelona

Original source: IRB Barcelona


LegoLish-Mot is the second prototype of LEGOLish, a “unique and creative project that brings the latest 3D imaging technology in a simple and visual form to the public at large and to school children,” explains Julien Colombelli, also co-inventor of the first LEGOLish prototype, together with Jordi Andilla (Institute of Photonic Sciences (ICFO)), Sébastien Tosi (IRB Barcelona), and Jim Swoger (Centre for Genomic Regulation, CRG).

“We have managed to remove the optical complexity from the microscope and bring a lego-based system that offers students the possibility to take images or videos themselves with their own mobile phones, yet functioning in 3D and using fluorescence on real biological samples,” remarks Julien. “Building a research microscope from Lego blocks will hopefully motivate schools and research labs to get one and to use it for educational purposes”, adds the co-inventor.

Microscopy, seeing to understand

Light Sheet Microscopy is the most important breakthrough in 3D fluorescence microscopy. This new technique allows the recording of images in vivo over several days without damaging the sample. And, much of the optimisation of this technology has been focused on delivering 3D images of very large samples at unprecedented resolution. Combined with chemical techniques to make samples transparent, full organ and tumour 3D imaging has recently been achieved at cellular resolution.

“Compared to many other fluorescence methods, such as confocal microscopy, that have been used in research labs for 30 years, Light Sheet Microscopy is so simple that it can be showcased to anyone and so hopefully it can clear up the perceived mystery surrounding what goes on in the dark rooms of research institutes,” explains Julien Colombelli. And he points out that “the latest and fully motorized version of LEGOLish will enable labs to test a basic Light Sheet system before deciding to purchase a commercial system”. In the current configuration, results generated by LEGOLish cost about 200 to 1000 times less than those produced by a commercial microscope.